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Abstract

Cosmological hypotheses should be very cautiously proposed and even more
cautiously received. This scepticism is well-founded. There are scientific, philosoph-
ical and sociological arguments to support this claim. Cosmology is not a science
like others since it contains more speculative elements than is usual in other branches
of physics, with the possible exception of particle physics. The goal of cosmology is
also more ambitious than routine theories in physics: cosmology aims to understand
everything in our Universe without limit.

Physical observations (redshifts, cosmic microwave background radiation, abun-
dance of light elements, formation and evolution of galaxies, large-scale structure)
find explanations within the standard model, although many times after a number of
ad hoc corrections. Nevertheless, the expression ‘crisis in cosmology’ stubbornly
reverberates in the scientific literature: the higher the precision with which the
standard cosmological model tries to fit the data, the greater the number of tensions
that arise. Moreover, there are alternative explanations for most of the observations.

Only the standard model is considered by most professional cosmologists, while
the challenges of the most fundamental ideas of modern cosmology are usually
neglected, owing mainly to sociological factors. Funding, research positions,
prestige, telescope time, publication in top journals, citations, conferences, and
other resources are dedicated almost exclusively to standard cosmology. Moreover,
religious, philosophical, economic, and political ideologies in a world dominated by
anglophone culture also influence the contents of cosmological ideas. Nonetheless,
the Universe is no mere social construct (a typical postmodern notion). Quite the
contrary: the Universe exists independently of our human affairs. Although its
global description may be misrepresented by our models, some of its properties and
partial truths are derivable through scientific analysis.

ix



Acknowledgement

I thank Terry Mahoney for the language revision of this book. Thanks are given to
Terry Mahoney, Louis Marmet, Sébastien Comerón, Bjørn Ekeberg, Juan E
Betancort Rijo, Francesco Sylos Labini, Eric J Lerner, Riccardo Scarpa and
Bruno Binggeli for helpful comments and suggestions.

x



Author biography

Martín López-Corredoira

Martín López-Corredoira (1970–; Spain) obtained doctorates in
Physics at the University of La Laguna (Tenerife, Canary Islands,
Spain) in 1997 and Philosophy at the University of Seville (Spain)
in 2003. He is staff researcher at the ‘Instituto de Astrofísica de
Canarias’ (IAC, Tenerife) working in the fields of galaxies and
cosmology, and has published more than 100 papers in major
astrophysical journals (ApJ, AJ, A&A, MNRAS, IJMPD mainly),
about half of them as first author. His contributions to cosmology

include tests of different models, cosmic microwave background radiation aniso-
tropies, large-scale structure of the Universe, ages of galaxies at high redshift,
variations of constants and alternative gravity scenarios, historical evolution of
measurements of cosmological parameters, and anomalous redshifts. His philo-
sophical work includes the philosophy, sociology and history of science, the
philosophy of nature and metaphysics (better termed anti-metaphysics), and other
themes relating to political and ethical topics. The author is, in a broad sense, a
philosopher-scientist, within a realist, materialist and sceptical tradition of con-
tinental European philosophy, but steadfastly eschewing from postmodern
approaches. Previous published books include Against the Tide. A Critical Review
by Scientists of How Physics and Astronomy Get Done (2008; as editor) and The
Twilight of the Scientific Age (2013); and other titles in Spanish.

xi



IOP Publishing

Fundamental Ideas in Cosmology
Scientific, philosophical and sociological critical perspectives
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Chapter 1

Historical and conceptual introduction to the
standard cosmological model

Some basic details, fundamental tenets, and observational pillars of the present-day version
of the standard ΛCDM cosmological model are offered. This includes the historical
development of the hypothesis, from Einstein to the present, and even farther back in
time, to search for the origin of the fundamental ideas, along with the equations that relate
the concepts of cosmology with the mathematical expression of the metric derived from
general relativity. Reasons for scepticism concerning the theory are pointed out, to be further
developed in later chapters.

1.1 Fundamental ideas in cosmology
Physical cosmology is a relatively recent area of scientific research, with roughly one
century of life counting from the first cosmological speculations based on Einstein’s
general relativity. However, the interest of humanity in understanding the origin or
eternity of the whole known Universe is as old as human culture, and is implicit or
explicit in many cosmogonies contained in religious and philosophical ideas.

Among human societies there have always been some individuals with too
ambitious megalomaniacal thoughts or delusions of grandeur1 who considered
that the whole of existence could be grasped in their hands, and they were pretty sure
of their representations of the cosmos, obliging the society of their epochs to believe
that they have reached absolute truths concerning the order of the Universe. In
contrast, most people need to believe in something, they need to have the sensation
that the forces that move the world are well identified, even if mysterious or

1The terms ‘delusions of grandeur’ and ‘megalomaniacal thoughts’ do not refer here to any kind of
psychological judgement, but aim to characterise individuals whose ambitions regarding their creations or
conquests exceed reality. For instance, these terms have been applied to personalities such as Napoléon
Bonaparte (1769–1821) for his ambitious dream of conquering all of Europe. In the field of knowledge,
however, we are clearly not dealing with any such ambition for political power, but more with a certain lack of
recognition of our limits in achieving a complete knowledge of the entire Universe.
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embedded in dark elements. Only a few sceptical thinkers dared to make such claims
as, ‘I know only that I know nothing’ (Socrates (470–399 BC)). The huge empty
spaces of the cosmos and the darkness of night produce fear. Blaise Pascal (1623–
1662) wrote, ‘when I consider the short duration of my life, swallowed up in an
eternity before and after, the little space I fill engulfed in the infinite immensity of
spaces whereof I know nothing, and which know nothing of me, I am terrified. The
eternal silence of these infinite spaces frightens me’. This fear makes people yearn for
certainties, either gods or the solved mysteries of the Universe; hence, the creators of
fantasies can achieve success in their epochs with reference to the global compre-
hension of nature. One may even imagine prehistoric magicians or priests looking at
the sky with a mixed feeling of wonder and fear in their quest to understand how it
all works, thus conceiving mainly religious ideas. Humanity has evolved, but some
psychological motivations have changed little. Although our science is very different
from religion or metaphysics and can claim much higher credibility, some humans—
modern priests of science—still think they can get a complete explanation of the
vast Universe. In that sense science has certain common characteristics with the
distant past.

Even from its earliest stages, the rapidity of the development of physical
cosmology did not prevent its creators from having complete faith in their
speculative models, and—less than a century later—scientists today claim to have
reached a fairly solid model, so much so that they no longer deem it necessary to
discuss the fundamental ideas underlying cosmology. Rather, they claim, it is now
time to concentrate on ‘precision cosmology’ (e.g., Primack 2005), in which only the
minutiae of the theory are fine-tuned. In this current paradigm of the standard
cosmological model, the fundamental properties of the Universe are believed to be
well understood, with only minor adjustments to the basic model remaining to be
made. The global picture of an expanding Universe originating during a singularity
during the Big Bang is now taken for granted, and certain basic properties of the
Universe are now considered to be known with amazing accuracy. For instance, the
age of the Universe is calculated to be 13.787 ± 0.020Gyr (Planck Collaboration
2020). It is difficult to believe that the precision with which we can determine the age
of the Universe (20 million years) is much higher than that of the age of our planet.
Does it not sound like the same kind of ambition that has accompanied the story of
many previous representations of the cosmos throughout history? Indeed, this is
reminiscent of the calculation by James Ussher (1581–1653) of the time and date of
the creation within Christian religion as ‘the entrance of the night preceding the 23rd
day of October (…) the year before Christ 4004’.

The present book follows a different direction with respect to the one that is
fashionable nowadays, which asserts that further discussion of the basic tenets of
cosmology is ruled out. I shall attempt to show that ‘fundamental ideas in
cosmology’ still warrant discussion, as there are many doubts concerning their
validity, and there is a dearth of discussion of possibly erroneous statements
concerning the foundations of standard cosmology. There is a significant number
of results in isolated and disconnected papers that are usually ignored by leading
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cosmologists, and which are challenging and critical of the standard model. There
are several observations that do not fit well into the current model. These
observations, while posing a problem, are dismissed as peculiarities that will soon
be fixed within the framework of an otherwise correct model. My intention here is to
bring together many of these ‘heretical’ papers in order to help the more open-
minded cosmologist to search the bibliography for tests of, and problems with, the
standard model. The purpose of this is to give voice and visibility to those
investigators who present and discuss observations that are unexplained, or
apparently at odds with, the current standard cosmological model.

Most cosmologists are quite sure that they have the correct theory, and that they
do not need to think about possible major flaws in the basic notions of their standard
theory. They do not usually work within the framework of truly alternative
cosmologies with different fundamentals2 because they feel that these do not at
present seriously compete with the standard model. These alternative models are
certainly less developed because cosmologists do not work on them. It is a vicious
circle. I consider this restrictive view to be unfair and I attempt here to open the door
to further discussion of the fundamental observations of cosmology.

I critically review the most important assumptions of the standard cosmological
scenarios. Some observations are discussed in order to show that the facts have not
been strictly proven in some cases. Elsewhere, I show the durability of the standard
theory against certain tests. I have chosen to review the general aspects of the
foundations of cosmology as a whole rather than concentrate on certain branches of
it because I am interested in expressing the caveats and open questions as a whole in
order to extract global conclusions on cosmology. The goal is to bring together the
work of many researchers who are not yet fully convinced of the standard view, thus
allowing them to present their innovative ideas on theoretical or observational
cosmology. I admit that some of the caveats presented may no longer hold, and that
some of the observational measurements may be incorrect. Nonetheless, establishing
who is right or wrong is not my mission here and I take no responsibility for the
contents of the critical papers or those of the defenders of the standard model. I am
conscious that many critical papers may need further analysis with regard to the
problems they posit before reaching a firm conclusion on whether the standard
model is correct or not. But my role here is not to defend any of the ideas in the
citations listed in the bibliography, but to remain neutral and show that the debate is
alive, and that the game of creating a definitive cosmological theory is not over yet.

The aim of this book is not to criticise one theory in order to promote another,
substituting one too ambitious enterprise by another, but rather to describe a socio-
cultural state of the art in cooking cosmological recipes, letting different voices be
heard within a healthy tradition of pluralism. I can already advance the general
conclusion, whose details will be given throughout this book: a sceptical view, a

2 I mean with important variations in the fundamentals of the model, such as questioning the expansion of the
Universe, the alternative origin of the cosmic microwave background radiation or light elements, etc. Instead,
they merely investigate the same cosmological model with the same fundamentals and play with different dark
energy models or other small variations.
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perspective of considering that we are still very far from that complete view of the
Universe, and a recognition that, although there are many elements in theories that
bring knowledge of some partial reality of the cosmos, we are far from having a
complete picture. There are too many elements of our culture that contaminate our
research to permit us to consider the global cosmological enterprise as a purely
scientific and objective one.

This book is divided into three parts. The first part (chapters 1 and 2) gives some
basic descriptions of the theoretical ideas underlying cosmological theories; the
second part (chapters 3–7) presents the recent debate concerning the comparison of
observational data with the fundamental ideas of the standard cosmological model;
the third part (chapters 8–10) offers philosophical and sociological perspectives.
While the first two parts present scientific contents in the literature, the third is more
a personal interpretation of the topics covered in this book. Nothing lasts forever,
neither cosmological theories and their arguments in favour or against, nor any
other perspectives. Nonetheless, the reader needs to bear in mind that the technical
discussions in the scientific part will most probably become outdated within a few
decades. If this book were to be read after, say, 2100, when new problems and
discussions would presumably have arisen in cosmology, the text of the first two
parts would most probably be considered obsolete. There are indeed some topics
discussed in this book that are already considered obsolete, but which are included in
order to provide a broad overview of debates in recent decades. Nevertheless, the
viewpoints in the third part might still remain valid, since they are general reflections
on science and humanity and the mentality of cosmologists at any given epoch.

1.2 Cosmology in western culture before the twentieth century
Every civilisation has its own cosmology that attempts to explain the order of our
visible cosmos, although the observable Universe was of course much smaller in the
past than it is today, and almost restricted to the Earth, Moon, Sun and planets of
the solar system and the sphere of fixed stars. The most primitive societies have only
proposed magical–animistic or mythological–religious cosmological views.
Advanced civilisations have developed more rational perspectives. There are also
many metaphysical ideas related to our vision of the totality of the existence
(Weltanschauung), instead of cosmology. Only astronomical views concerning
cosmology are expounded here, leaving aside all ethnoastronomical aspects. I do
not offer a full description of every cosmology in the history of astronomy—not even
of astronomical cosmologies generated in western culture, since a proper treatment
of these would require several books. That is not my purpose here, but I briefly
mention some of them to illustrate the paths humanity has taken before reaching our
present-day scientific outlook.

Within western culture, it was ancient Greece that witnessed the dawn of reason
and an empirical approach that gave rise to philosophy and the natural sciences,
thus setting a new horizon of intellectual ideas that tried to explain our cosmos.
Indeed, cosmological speculation and natural philosophy were born together,
and both disciplines flourished together at different periods throughout history
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(Gale 1993). Thales of Miletus (c. 623–c. 545 BC) devised a cosmology based on
water as the essence of all matter, with the Earth as a flat disc floating on a vast sea,
ideas that were indeed contained in previous Mesopotamian or Babylonian
cosmologies. Anaximander (c. 610–c. 546 BC) conceived a Universe with the
Earth at its centre. Among his many other achievements, he was already aware
that the Moon reflected the light of the Sun and described the Earth as spherical—so
already at that time the idea of a flat Earth was obsolete—and knew the origin of
equinoxes and solstices. Also, Pythagoras (c. 570–c. 490 BC) and his disciples knew
that the Earth was spherical and had decomposed solar motion into two compo-
nents: a yearly and a daily one. Philolaus (c. 470–c. 385 BC), a follower of
Pythagoras, proposed a model in which the Earth, Moon, Sun and planets all
moved around a central fire. Since the Earth was much closer to this central fire than
the rest of the heaven bodies, it would be almost at the centre of the Universe. More
fully developed mathematical models or philosophical considerations applied to the
planetary motions would come later, as conceived in the mind of Plato (c. 427–347
BC), Eudoxus of Cnidus (c. 390–c. 337 BC), Aristotle (385–322 BC), and Heraclides
Ponticus (c. 390–c. 310 BC), all from a geocentric point of view. Heliocentric models
would start with Aristarchus of Samos (c. 310–c. 230 BC) and Seleucus of Seleucia
(c. 190–c. 150 BC). As is well known, however, the Aristotelian geocentric view,
maintained by Apollonius of Perga (c. 262–c. 190 BC) and Ptolemy (AD c. 100-c.
170), would prevail until the end of the Middle Ages in western civilisation. The soul
of the cosmos in Plato’s view was its principle of eternal and recurring circular and
uniform motions, and this doctrine prevailed in Aristotle’s writings and generated
later models, even the heliocentric ones. In Ptolemaic astronomy, there was a
complex machinery of epicycles, equants and deferents, devised to save the idea of
uniform circular motion with the Earth at the centre.

Not only were the motions of the planets, together with those of the Earth, Moon
and Sun, given explanations, but other astronomical considerations extended the
cosmological horizon. TheMilky Way was a very evident visible structure in the sky.
Although ancient philosophers had no idea of its dimensions or the distances
involved, speculation concerning its nature flourished very early on. For instance,
Anaxagoras (500–428 BC) posited that the Milky Way was a reflection of light
emitted by stars different from the Sun. Theoretical speculations about the size of the
Universe were also in the mind of Greek philosophers. Archelaus (nicknamed ‘the
physicist’, fl. 5th century BC), a disciple of Anaxagoras and master of Socrates,
claimed that the Universe has no limits. Archimedes of Syracuse (c. 287–c. 212 BC)
would also make the Universe vastly larger than was then believed, because no
stellar parallaxes were measurable at that time, and a moving Earth in a heliocentric
model should produce a parallax in the apparent positions of the fixed stars, unless
the stars were too far away for their parallaxes to be measured. However,
Archimedes proposed a maximum size of 0.5 parsec by assuming that the ratio of
the diameter of the Universe to the diameter of the orbit of the Earth around the Sun
was equal to the ratio of the diameter of the orbit of the Earth around the Sun to the
diameter of the Earth.
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The medieval schoolmen absorbed parts of the cosmologies of Plato and
Aristotle, although adding other elements connected to religion. For instance, in
1225, the bishop Robert Grosseteste (1175–1253) described a cosmological model
reminiscent of the present one, in which the Universe is created in an explosion and
subsequent condensation. God issued His first fiat, ‘Let there be light’, and at that
precise instant light issued from the divine and entered matter. The power of this
luminosity was not so great as to produce a further expansion of the outermost parts
of this mass to the highest degree. Grosseteste speculated that there was some form
of coupling between light and matter, consequently giving rise to the material body
of the entire cosmos. Expansion takes place when matter reaches a minimum density
and subsequent emission of light from the outer region leads to the creation of the
inner bodily mass so as to create nine celestial spheres (Sparavigna 2014, Bower et al
2018).

In The Divine Comedy, an allegorical vision of the afterlife and Christian world-
view, Dante Alighieri (c. 1265–1321) offers a typical example of cosmovision. He puts
the Earth at the centre of the Universe in accordance with the Aristotelian model.
Inside the Earth is found Hell, divided into nine circles, representing increasing levels
of sin. Between the surface of the Earth and sphere of the Moon lies Purgatory.
Outwards, the Earth is surrounded by whirling spheres made of transparent solid
matter. Added to the eight Aristotelian spheres corresponding to the planets, Moon,
Sun, and the fixed stars, there is a ninth sphere, the primum mobile, the source of the
motion of all the inner planetary spheres. Beyond the primum mobile lies the spiritual
Universe, the mind of God, or Empyrean heaven; this sphere thus marks the boundary
between the natural and supernatural worlds (see figure 1.1). This is certainly not a
purely scientific approach, but a religious interpretation mixed with previous scientific
ideas. Some of its elements might still be present in some degree in the construction of
putatively scientific modern cosmology (Binggeli 2006, 2017) (see section 9.3). The
cosmologies of much older religions, such as Vedism, developed in 1700–1100 BC, or
Jainism (c. 500 AD), also provided fanciful explanations of the entire Universe. In the
Middle Age, other cultures gave place to more sophisticated scientific models of the
solar system such as that of Aryabhata (476–550), Nilakantha Somayaji (1444–1544)
in India, and those of the Maragha school in Muslim countries (13th–16th centuries)
based on the Aristotelian model.

The new change of paradigm, or recovery of an old one proposed by Aristarchus
of Samos, arose in Europe with Nicolaus Copernicus (1473–1543), Giordano Bruno
(1548–1600), Galileo Galilei (1564–1642) and Johannes Kepler (1571–1630), who
reintroduced and finally established the heliocentric model. With Kepler’s discovery
of his first two laws of planetary motion, introducing elliptical orbits and abandon-
ing uniform circular motion in the heavens, the stage was set for the development by
Isaac Newton (1643–1727) of a new physics and theory of universal gravitation.
Moreover, beyond the solar system, Bruno defended an infinite Universe with an
infinite number of suns (stars), and Galilei was the first to observe the Milky Way
Galaxy as individual stars through the telescope, instead of a continuous cloud or
nebulosity as previously thought. The new ideas and observations expanded the
limits of the Universe far beyond the solar system, and the new cosmologies would
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have to give explanations for this new, much wider, scenario, which would be either
infinite or at least include all of the visible stars in the Milky Way.

Newton’s physical cosmology—leaving aside his religious beliefs—was the
scenario in which to refer a scientific vision of the Universe in 18th and 19th

Figure 1.1. Dante’s Universe as illustrated by Michelangelo Caetani (1804–1882), Duke of Sermoneta and
Prince of Teano (Reproduced from https://commons.wikimedia.org/wiki/File:Michelangelo_Caetani,
_Overview_of_the_Divine_Comedy,_1855_Cornell_CUL_PJM_1071_01.jpg. Original Caetani 1821. Image
stated to be in the public domain.).
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centuries, thanks in particular to his theory of gravitation, which imposed some
order in the dynamics of the stars and planets, and also the asteroids, comets, Moon
and Sun, which constituted all the astronomical objects then known. The cosmo-
logical question in Newton’s physics, however, posed a great problem that needed to
be solved: Bentley’s paradox concerning the permanence and stability of the system.
Why has not the whole Universe collapsed through the action of gravity? According
to Newton, each star in a finite Universe should be attracted towards every other
star, such that they all fall together at some central point. Newton acknowledged the
problem in a letter to Richard Bentley (1662–1742), a leading Cambridge philos-
opher at the time (Kerzsberg 1986). Newton also thought about solving this issue
with an infinite Universe containing a totally homogeneous distribution of mass, but
he realised that this was an unstable solution: even a very small nudge exerted on a
star would cause a slight deviation from uniformity in the mass distribution that
would produce a cascade causing all matter to collapse. In the end, Newton skipped
the paradox by claiming that God prevented the collapse by making ‘constant
minute corrections’, so this stability and permanence must be an action of God
(Kerzsberg 1986). The impression after the end of 17th century was that there were
no cosmological models that could be fully understood in scientific terms, but that
key to understanding was through a thorough understanding of the gravitational
interaction among the different bodies of the Universe. This idea has remained
embedded in the mentality of all cosmologists, who still think that a gravity theory
immediately gives us a cosmological theory.

Western intellectuals of the 18th century were impressed by the power of
Newtonian physics + gravitation in comprehending all astronomical phenomena;
they were in awe of the genius of the mathematician who could unlock the secrets of
the Universe. Newton’s laws served not only to explain the observed motions of the
planets, but also to make predictions of other events. Society has always been
fascinated by predictions, such as the supposed first ever prediction of a solar eclipse
by Thales of Miletus in 585 BC, or the confirmation by Eddington and his
collaborators in 1919 of Einstein’s theory of general relativity with the measurement
of the Sun’s deflection of the light from stars observed during an eclipse. All these
events drew people towards reason and science, as happened, for example, when
Edmund Halley (1656–1742) predicted the return of the comet later named after him in
late 1758–early 1759, which earned him much acclaim when his successful prediction
gloriously vindicated Newton’s theory of gravitation (Wallis 1984). We might perhaps
compare the physicists who could manipulate gravity equations to foretell how
the heavens moved to the magicians and prophets of primitive societies. There is the
suggestion of a sense of immensely powerful mini-gods who alone understand the
Universe as a whole, and this sense of wonder is the essence of cosmology as an
intellectual movement. Consequently, when the next towering genius of gravitation
arrived in the form of Einstein, the ground was laid for further claims to possessing
keys to understanding the entire Universe, as we shall see in the next section.

The word Cosmology applied to the study of the Universe as a whole was first
used in a work on metaphysics Cosmologia Generalis (1731) by Christian Wolff
(1679–1754), a scientific study of the Universe which involved physics, astronomy

Fundamental Ideas in Cosmology

1-8



and philosophy, but also including esotericism and religion. Nonetheless, 18th and
19th science would be more devoted to a Universe without metaphysics, without
God, a materialistic science, aimed at understanding not only the structure and
dynamics of matter, but also its origin and evolution.

In 1750, Thomas Wright (1711–1786) published An Original Theory or New
Hypothesis of the Universe, in which he suggested that the stars were located in
spherical shells or rings around a centre by which they were attracted and gave it some
metaphysical interpretation. He envisaged the Milky Way to be a transversal section of
the Universe when viewed from the great centre. The philosopher Immanuel Kant
(1724–1804) read the book by Wright and did not accept the supernatural claims but,
inspired by it, proposed in his work Allgemeine Naturgeschichte und Theories des
Himmels (1755) that the Universe to comprise a number of ‘island universes’, and
gravity to create a hierarchical structure of planets around stars, the stars accumulating
to form island universes, which would also be clustered into groups of island universes.
At the beginning of the 20th century, this scenario would be confirmed, the galaxies
being these island universes and the Milky Way itself a galaxy. Johann Heinrich
Lambert (1728–1777) also developed a theory of the generation of the Universe that
was similar to the nebular hypothesis that Wright and Kant had proposed. Lambert
published his own version of the nebular hypothesis of the origin of the solar system in
Cosmologische Briefe über die Einrichtung des Weltbaues later, in 1761, although
started independently in 1749, before Wright’s and Kant’s publications. Lambert
hypothesised that the Sun was part of a group of stars which travelled together through
theMilkyWay, and that there were many such groupings (star systems) throughout the
Galaxy. The appearance of theMilkyWay could be accounted for by assuming it to be
made of a ring of stars all about equally distant (Gray 1978).

The nineteenth century would be more conservative in its speculations concerning
cosmological scenarios and more focused on the development of a serious science,
such as astrophysics, which tried to explain certain phenomena in the Universe
separately. Nonetheless, there are remarkable examples of the interest of different
scientists and thinkers on the mysteries of the extension of the cosmos in space and
time. Heinrich Wilhelm Olbers (1758–1840) put forth his famous paradox, according
to which the darkness of the night sky conflicts with the assumption of an infinite
and eternal static Universe, the only possibility in terms of Newtonian physics.
Indeed, the idea had already been proposed much earlier, for instance by Thomas
Digges (c. 1546–1595).

The poet and writer Edgar Allan Poe (1809–1849) would speculate a solution to
this paradox and would also suggest the expansion and collapse of the Universe in
his literary text Eureka: a Prose Poem (1848): he rejected the idea of an infinite
Universe to solve Olber’s paradox and reasoned that a Universe governed by
gravitation would collapse into a heap if not kept apart by some form of repulsion.
Poe postulated that God had, in an enormous explosion at the creation, thrust all the
stars apart which would first expand and then contract into a final catastrophe, the
end of the world. The similarity of this scenario with the present one may us lead to
think that, although scientifically unexplained, a Universe in expansion was already
in the air before the Newtonian gravity was substituted to make possible this fantasy
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of Poe. But in Poe’s idea of a finite Universe we have the problem of the borders of
the Universe, which could not be explained by the poet in a logical way.

Another key element in this century would be the mathematical development of
non-Euclidean geometries with more than two dimensions. The Russian mathema-
tician Nicolái Lobachevsky (1792–1856) stated that if space is either Euclidean or
negatively curved, like the surface of a saddle, it must be infinite. However, there are
flat non-Euclidean universes that may be finite. Using a two-dimensional analogy,
such a space could have the topology of a giant torus (Silk 2001). There are indeed
18 distinct types of flat spaces, with only ten of them being compact, the others being
infinite in one or more directions (Silk 2001). This gives a solution to Olbers’
paradox, by making possible a finite Universe without borders. The non-Euclidean
geometries would also be an element to be included in the metrics of the
cosmological models to be developed in the next century. In particular, Bernhard
Riemann (1826–1866) founded the field of Riemannian geometry, a tool that would
later prove to be necessary for the mathematical formulation of general relativity.

1.3 Origin and evolution of the standard cosmological model
There remains much to discuss concerning the origin and evolution of the Universe.
It may still not be clear whether the Universe had a beginning or not, or whether its
evolution followed the present models or not. There are aspects of nature that still defy
explanation, especially where great distances in space and time are concerned and for
which the history of the Universe that cannot be probed at present. Nevertheless, the
scientific community is much closer to hand, and it is easier to track the origin and
evolution of human ideas, together with their causes and motivations.

Since the beginning of the 20th century, a continuous evolution and perfection of
what we today call the standard cosmological model has been produced, although
some authors like to distinguish separate periods within this evolution. For instance,
Lerner (1991) distinguished four periods prior to 1991: (1) before the end of World
War II; (2) between 1945 and 1965, fromGamow to the official discovery of the cosmic
microwave background radiation; (3) between 1965 and 1980; (4) from 1980 onwards,
with the introduction of inflation. Another possible historical division of the develop-
ment of cosmology into six periods was proposed by Luminet (2008): (1) initial period
(1917–1927); (2) the period of development (1927–1945); (3) the period of consolidation
(1945–1965); (4) the period of acceptance (1965–1980); (5) the period of enlargement
(1980–1998), and (6) the period of high precision experimental cosmology (1998–);
which is equivalent to Lerner’s proposal with the exception that Lerner’s first period is
subdivided into two blocks, and after 1998, the year of the establishment of the dark
energy hypothesis, is added a new period, which of course was not contained in
Lerner’s division because it had been stated much sooner, in 1991. Certainly, there are
phase transitions—small revolutions—within the smooth evolution. Locating them in
time is somewhat subjective; it is easier to see history as a continuous quest for the
confirmation of an idea conceived a priori.

At the beginning of 20th century, two great achievements in physics and astronomy
initiated the journey towards the standard cosmological model as we know it today.
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First, the observational evidence for the existence of many galaxies separated by very
large distances—much larger than the usual distances managed by astronomers
previously—the Milky Way thus being only one galaxy among many. It was
definitively established after a period of discussion that finished with the Great
Debate in 1920 (Hetherington 1993) between the American astronomers Heber D
Curtis (1872–1942), who defended the hypothesis that some nebulae (now called
galaxies) were not part of the Milky Way but were located at very large distances from
it, and Harlow Shapley (1885–1972), who claimed that these nebulae were part of the
Milky Way. At first, Shapley was more convincing among astronomers3. Curtis was
later demonstrated to be the clear winner, although Shapley was at least right in his
statement that the Sun was not at the centre of the Milky Way. In my opinion, this was
the most important revolution in astronomy after Copernicus and Galilei. The Sun was
now no longer at the centre of our Galaxy, and the Milky Way no longer occupied a
privileged position in the Universe, but was merely one galaxy among many other
galaxies. A fresh blow to the belief that our civilisation and our planet occupy an
important position in the Universe. This achievement gave rise to the subsequent
development of extragalactic astronomy and, implicitly, a new cosmological vision was
emerging out of this scenario: a vision of a Universe of vast spaces, impossible to
imagine, where galaxies are the fundamental components in a larger-scale structure.

The other great achievement came from physics in the form of Albert Einstein’s
(1879–1955) general relativity. Certainly, his earlier discovery of special relativity
was also very important, but for astronomical, and particularly from the perspective
of cosmology, general relativity was the long-awaited breakthrough. Newton’s
magnificent achievements had blocked the free expansion of cosmological ideas
because of the problems in solving the stability of systems without an eventual
collapse and having recourse to godly intervention4. Einstein was like a Messiah of
Gravity, resurrecting fervour for a global comprehension of the Universe. The
manifestations of the new paradigm would come immediately after among many of
the brightest minds in physics and astronomy (plus the many thousands of amateurs
who try to imitate him or challenge relativity today). The father of general relativity
himself produced the first steps towards a cosmology in an early proposal (Einstein
1917) when he posited a static model that included a cosmological constant to
guarantee stability. He would later recognise this proposal as his ‘biggest blunder’.
This hurry to produce a cosmology, only two years after the publication of general
relativity, may be the reason why this first approach did not last long. It evidences

3 Indeed, Shapley was more interested in defending the hypothesis that the size of the Milky Way was very
large (diameter of 100 kpc) and that the question of spiral nebulae was secondary, but he was wrong on both
counts. Another concern of Shapley’s in the debate was his candidacy for the directorship of the Harvard
college Observatory.
4 Indeed, a model of an expanding Universe could be obtained even within a Newtonian cosmology, as was
shown by Milne (1933, 1934), by maintaining an infinite Euclidean space, with Newtonian gravity and
regarding expansion as a pure Doppler effect in the recession of the galaxies. Many facts and equations that
were explained by the standard model with general relativity could also be explained with Newtonian
cosmology. There remained some problems (stability, Olbers’ paradox), but there were also proposals to solve
them without general relativity (Baryshev and Teerikorpi 2012 [section 7.1.3]).
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how eager Einstein and his contemporaries were to probe the deep truths of the
wider Universe.

The models that would constitute the basis of our present standard cosmology came
a little later. The basic idea assumed is that the current Universe is homogeneous on a
large scale, and that the distances among all the different objects are currently growing
owing to the expansion of the Universe, a recession of objects with respect to one
another on a large scale. On small scales, different objects could cluster together
because their gravitational attraction overcomes the expansion. The Russian physicist
Alexander Friedmann (1888–1925) developed the basic aspects of the application of
general relativity to a cosmological model (Friedmann 1922, 1924).

The German astronomer Carl Wirtz (1876–1939) noted in 1924 a correlation
between the faintness of a galaxy and its redshift. Edwin P Hubble (1889–1953) and
Milton Humason (1891–1972) measured the distance of a number of galaxies during
the same year and would later find the famous Hubble–Lemaître law of the linear
relationship between radial velocities and distances. The redshifts used by Hubble had
been measured by Vesto Slipher (1875–1969), published by Arthur S Eddington (1882–
1944) (Eddington 1923) and added to by Humason (1929) before Hubble (1929)’s
famous announcement, interpreting the law as a proof of the expansion of the
Universe, whose theoretical models were known to Hubble (Sandage 1995). It is
curious that Hubble derived his law using a sample of only 24 nearby galaxies. At such
small distances, peculiar motions dominate over recession. Therefore, his famous
discovery was based on a coincidence that all the galaxies with dominant peculiar
motions happened by chance to follow a linear law of velocity with distance. This
shows us how often the theoretical preconceptions guide research (Bonometto 2001).

Prior to Hubble’s publication in 1927, the Belgian Catholic priest, physicist and
astronomer Georges Lemaître (1894–1966) developed a theoretical model of an
expanding Universe in an extension of the work of Friedmann. The work by
Lemaître (1927) was published in French in a small Belgian journal, and also tells us
about the recession of galaxies and the recession rate in the linear velocity–distance
relationship, including an analysis of observational data, as rediscovered later by
Hubble in 1929. Hubble did not cite the paper by Lemaître and took all credit for the
discovery of the expansion of the Universe. His collaborator Humason told once in
an interview offered in 1965 that Hubble knew about the velocity–distance relation-
ship of Lemaître from a talk offered at an IAU meeting in Holland in 1928 (Llallena
Rojo 2017 [p 90]), although it is not entirely clear whether this was true or whether
Hubble was really unaware of Lemaître’s discovery.

In 1931, Lemaître’s paper of 1927 was translated into English for the journal
Monthly Notices of the Royal Astronomical Society (MNRAS) and this translation
completely omitted some paragraphs and formulae from the original paper that
referred to the analysis of data showing a recession of galaxies and the Hubble–
Lemaître law (Nussbaumer and Bieri 2009, Bergh 2011, Block 2012). The reasons
for this omission have been widely discussed (Block 2012). It was later clarified
(Livio 2011, Luminet 2013) that Lemaître himself did the translation of his paper
and deliberately omitted the relevant paragraphs. Lemaître wrote in a letter to the
editor of MNRAS: ‘I did not find advisable to reprint the provisional discussion of
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radial velocities which is clearly of no actual interest, and also the geometrical note,
which could be replaced by a small bibliography of ancient and new papers on the
subject. I join a French text with indication of the passages omitted in the
translation.’ What an awkward action!

Another line of development of the cosmological model was suggested by the
Japanese physicist Seitaro Suzuki, who suggested that the observed helium–hydro-
gen ratio might be explained ‘if the cosmos had, at the creation, the temperature
higher than 109 degrees’ (Suzuki 1928). Lemaître in 1931, with the expansion and the
arrow of time from the second law of thermodynamics in mind, developed his
concept of the ‘primeval atom’ (Lemaître 1931, 1946), the first version of what later
would be called the ‘Big Bang’. According to him, the initial state of matter in the
Universe might be thought of as a sea of neutrons. Lemaître thought that cosmic
rays were relics of primordial decays of atoms, which was demonstrated later to be
wrong. Moreover, his ideas on stellar evolution were also demonstrated to be wrong
during the 1930s so, by the end of the decade, the primeval-atom hypothesis had
been generally rejected by the scientific community.

Another important protagonist during the gestation of modern cosmology was
the above-mentioned British astronomer Arthur S Eddington (1882–1944), who was
one of the main scientists responsible for spreading and publicising general relativity
and its implications for cosmology, apart from giving the most remarkable impulse
to the theory by his observations of the solar eclipse in 1919. Eddington (1929, 1931)
was also a defender of a finite Universe and the extrapolation of the second law of
thermodynamics to the whole Universe. Another British physicist supporting this
approach was James Jeans (1877–1946), in a work titled ‘The Physics of the
Universe’ (Jeans 1928). Lemaître and Eddington proposed philosophical arguments
that excluded infinite universes that were also compatible with general relativity.

Some philosophers or historians of science (e.g., Gale 1993) consider the birth of
modern cosmology to have occurred on 29 September 1931, when the British
Association convened a special session devoted solely to the topic ’The Evolution of
the Universe’ (Dingle 1931). At the meeting, all the major cosmological workers had
reached consensus on two essential points: (1) they had a science; (2) this science was
deployed about the general theory of relativity as its central model. Hubble,
however, refrained from accepting the consensus of a relativistic model of an
expanding Universe until at least 1937.

After World War II, George Gamow (1904–1968), a Russian physicist who
emigrated to US in 1934 where he would develop his cosmological ideas, compared
the detonation of an atomic bomb with the origin of the Universe and popularised
the ‘Big Bang’5 theory (Gamow 1947). He and one of his students, Ralph Alpher

5 In fact, the name ‘Big Bang’ was not given by Gamow, but by one of the opponents of his theory, Fred Hoyle
(1915–2001), who dubbed Gamow’s primaeval atom theory as the ‘Big Bang’ in order to ridicule it. However,
the name caught on. Several decades later, in 1993, the journal Sky & Telescope set a competition for a
suitable alternative name for the standard theory. After receiving many proposals, they could not find anything
to beat ‘Big Bang’. Hoyle would say ‘Words are like harpoons, once they go in, they are very hard to pull out’
(Horgan 1996 [chapter 4]).
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(1921–2007), published a paper in 1948. Gamow, who had certain sense of humour,
decided to put the reputed physicist Hans Bethe (1906–2005) as second author, even
though he had not participated in the development of the paper, so the result was a
paper by Alpher, Bethe and Gamow (Alpher et al 1948), to rhyme with ‘alpha, beta
and gamma’. Later, Robert Herman (1914–1997) joined the research team, but—
according to Gamow—he stubbornly refused to change his name to ‘Delter’.

Rather than searching for an explanation of cosmic rays, as Lemaître did,
Gamow and his collaborators attempted to explain the abundance of the elements,
assuming that there was no process that could explain the present-day abundances.
They contended that the heavier elements must have been formed during an early
hot initial stage of expansion, since they thought that stars could not achieve
temperatures high enough to produce them. This would be rejected by Hoyle (1946,
1947), who showed that heavy elements can indeed be formed in the stars. A detailed
theory by Margaret Burbidge (1919–2020) and collaborators would later show how
stars could produce elements in proportions very close to those observed to exist
(Burbidge et al 1957). However, the theory by Burbidge et al could not explain the
abundances of helium, a quarter of all matter, and it was hard to see how certain
light elements (deuterium, lithium, beryllium and boron) could survive at all.
Another attempt was made at the beginning of the 1960s by the Soviet physicist
Yákov Zel’dovich (1914–1987), who proposed a cold Universe scenario that
predicted the conversion of all matter not into helium, as in the former version,
but into pure hydrogen (Zel’dovich 1963).

Alpher and Herman (1949) and Gamow (1953) also predicted an early stage of
the Universe that would produce a relic radiation that could be observed at present
as a background in microwave wavelengths, corresponding to the epoch of
decoupling of matter and radiation. Alpher and Herman calculated the necessary
mass density of neutrons and protons to make the helium abundance agree with the
observed value (Burbidge 2006). Nevertheless, Gamow and his coworkers were of
the opinion that the detection of that microwave radiation was completely unfeasible
(Novikov 2001). The first published recognition of the relic radiation as a
detectable microwave phenomenon was in 1964 by the Russian cosmologists
Andrei Doroshkevich (1937–) and Igor Dmitriyevich Novikov (1935–)
(Doroshkevich and Novikov 1964). Then came the official discovery of the cosmic
microwave background radiation by Arno Allan Penzias (1933–) and Robert
Woodrow Wilson (1936-) (Penzias and Wilson 1965), although this same radiation
had been previously directly or indirectly observed by other researchers6.

Another piece of evidence supporting the standard model of the expanding
Universe came from Malcolm Longair (1941–) and Martin Ryle (1918–1984), who

6 Shmaonov (1957) from the former Soviet Union was measuring radio waves coming from space at a
wavelength of 3.2 cm and concluded that the absolute effective temperature of the background radiation
appeared to be 4 ± 3 K, independent of the direction of the sky. It is also possible that a team of Japanese radio
astronomers measured this radiation at the beginning of 1950s (Novikov 2001). It was also found by Andrew
MacKellar (1910–1960) in 1941 as the radiation necessary to excite rotating cyanide molecules (Novikov
2001). Herzberg (1950) also mentions that there is a strange excitation of molecular spectra, as if a 2.3 K
radiation existed.
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argued that the data indicate that the Universe must be evolving (Longair 1966, Ryle
1968). The galaxies at high redshift—that is, at great distance—showed distributions
and properties different from those at low redshift. Since at larger distances we are
observing the past Universe, given the limited speed of light, this implies that the
distant galaxies belong to an epoch of the Universe that was much earlier than the
present one. This would be a strong argument against alternative models, partic-
ularly the steady state model (see section 2.2), which assumed that the Universe
never changes. The story of the understanding of galaxy evolution also involves
Philip James Edwin Peebles’ (1935–; Nobel Prize for Physics in 2019) initial
suggestion of a galaxy formation model that starts in the early Universe with
baryon only perturbations to get around the smoothness of the Cosmic Background
Radiation (Peebles and Yu 1970).

This confirmation of the predicted microwave radiation, even if the predictions
did not completely fit the observations (see section 5.1), and evolution of the
Universe gave confidence to those cosmologists who supported the standard model.
Many hitherto sceptical physicists and astronomers became convinced that they now
had a solid theory. By the mid-seventies, cosmologists’ confidence was such that they
felt able to describe in intimate detail events of the first minutes of the Universe
(Weinberg 1977). Nonetheless, there were problems that remained to be solved, such
as why the Universe appeared to be the same in all directions (isotropic), why the
cosmic microwave background radiation was evenly distributed, and why its
anisotropies were so small. Why was the Universe flat and the geometry nearly
Euclidean? How did the large-scale structure of the cosmos originate? Clearly, work
on the fundamental pillars of the cosmological edifice remained to be done.

In the 1980s, proposals were brought forth to solve these pending problems, with
inflation as the leading idea in the solution of cosmological problems at the
beginning of the Universe, and the idea of non-baryonic dark matter as a new
paradigm that allows the theory to fit the numbers of some observations. Grand
Unified Theories of particle physics would also support the existence of non-
baryonic dark matter. In chapter 3, I give details of the motivation and evolution
of these two ideas. Also, the joining of cosmology and particle physics and scenarios
containing baby universes, wormholes, superstrings and other exotic ideas were
born. This excess of theoretical speculation not based on observations has led some
authors to call this epoch the era of post-modern cosmology (Bonometto 2001). This
union between cosmology and particle physics is due in part to the halting of particle
physics experiments because of their escalating cost, a situation that led many
particle physicists to move over into cosmology, wishfully contemplating the
Universe as the great accelerator in the sky (Disney 2000, White 2007). Alas,
particle physicists lack the necessary astronomical background—complained Disney
—to appreciate how soft an observational, as opposed to an experimental science, of
necessity has to be.

In the 1990s, a third patch was applied to the theory in an effort to solve new
inconsistencies with the data in the form of dark energy, which supposedly produced
acceleration in the cosmic expansion. The problems to be solved were basically the
new Hubble–Lemaître diagrams with type Ia supernovae as putative standard
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candles, the numbers obtained from cosmic microwave background radiation
anisotropies, and especially estimates of the age of the Universe, which were
inconsistent with the calculated ages of the oldest stars. I will offer further details
about the emergence of the dark energy idea in chapter 3.

The renovated standard model including these new elements added ad hoc would
come to be called the ΛCDM cosmological model, where Λ stands for dark energy
and CDM stands for cold dark matter, the favoured subgroup of models of non-
baryonic dark matter7. A graphical scheme like the one given in figure 1.2 represents

Figure 1.2. Graphical representation of the evolution of the Universe over 13.77 billion years, including a
period of ‘inflation’ that produced a burst of exponential growth in the Universe. Later, the expansion of the
Universe gradually slowed down as the matter gravitationally pulled in on itself. More recently, the expansion
has begun to speed up again as the repulsive effects of dark energy have come to dominate the expansion of the
Universe. The Cosmic Microwave Background Radiation was formed 375 thousand years after the beginning
of the Universe. (Reproduced from https://map.gsfc.nasa.gov/media/060915/index.html by NASA/WMAP
Science Team, WMAP # 60915, uploaded 30 May 2018. Image stated to be in the public domain).

7 The definition of cold or hot dark matter refers to the velocity of the particles that constitute it, which grows
when the mass of the particles is lower, so cold matter means massive particles. In the cold dark matter (CDM)
theory, the structure of the large-scale distribution of galaxies grows hierarchically, with small objects
collapsing under self-gravity first and then merging in a continuous hierarchy to form larger and more massive
objects. It is the opposite of the hot dark matter (HDM) paradigm, which was more commonly used in the
early 1980s, where structure does not form hierarchically (bottom-up), but forms by fragmentation (top-down),
with the largest superclusters forming first in flat pancake-like sheets and subsequently fragmenting into
smaller pieces that constitute the galaxies. There are also models that are a mixture of cold and hot dark
matter, called warm dark matter (WDM), or interacting dark matter (iDM) that have been competing with
CDM in recent years (e.g., Bose et al 2019).
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the Universe according to the standard model. Some cosmologists referred to it as
‘concordance cosmology’, to emphasise that this model is in agreement with all the
known observations. As said by Merritt (2017), when cosmologists speak of
‘concordance’, they mean that it is possible to find a single set of parameters that
provides an acceptable fit to the conjunction of observational data sets, but not that
there is an independent confirmation of the value of any single parameter.

Some authors, critical of the standard model (e.g., Stubss 2007, Hartnett 2008),
prefer to call it ‘consensus cosmology’ rather than ‘concordance cosmology’, wishing
to emphasise that this new cosmology is above all a sociological question of
agreement among powerful scientific teams in order to establish the orthodoxy of
a fundamental dogma. This agreement would be mainly between two powerful
cosmological groups, the teams dedicated to the analysis of supernovae and the
cosmic microwave background, who found a rough coincidence in the necessary
amount of dark energy, although with large error bars, that reinforced their belief
that they had discovered an absolute truth, thus compelling the rest of the
community to accept this truth as a solid standard, while at the same time discarding
the results of other less powerful cosmological groups that presented different values
of the parameters. Talking about consensus cosmology, Rudolph (‘Rudy’) Schild
(1940–) once queried, ‘Which consensus? Do you know who consented? A bunch of
guys at Princeton who drink too much tea together’ (Unzicker and Jones 2013
[chapter 3]).

With this, we reach 1998 to cover the period from the beginning of the period of
precision cosmology until today (e.g., Primack 2005, Luminet 2008). Rather than
major discoveries or proposals, I would emphasise the lack of discussion on the
fundamental ideas in cosmology dating from this epoch, when it becomes a tenet of
belief that all the major problems have been solved. This state of complacency has
resulted in an excess of confidence in the robustness and superiority of the standard
model with respect to any alternative model. Certainly, some minor topics are being
debated, such as the equation of state of dark energy, the types of inflation or the
coldness or hotness of dark matter, but these are subtleties within the major
fundamental scheme. This is the epoch in which the main enterprise of cosmology
consists in spending big money on megaprojects that will achieve accurate measure-
ments of the values of the cosmological parameters and solve any small problems
that remain to be explained. This is also the epoch of highest social recognition of
cosmology: Not only do schools, museums, and popular science journals talk about
the Big Bang as well established, to be compared to Darwin’s evolution and natural
selection theory, but cosmology now occupies a privileged ranking among the most
prestigious natural sciences. For instance, cosmology and its dark elements have
been awarded with Nobel Prizes in Physics in 2011 and 2019, respectively for the
putative discovery of the dark energy that produces the acceleration of the
expansion, and for the inclusion of the dark components in our understanding of
the Universe. One may wonder whether unconfirmed quasi-metaphysical specula-
tions should properly form part of the body of recognised knowledge of physics,
leaving behind the conservative tradition of Nobel committees not awarding prizes
for speculative proposals. Einstein did not receive either of his Nobel Prizes for his
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discovery of special and general relativity; neither did Curtis for his definitive
recognition of the true nature of galaxies in the Great Debate of 1920. Neither
Lemaître nor Hubble received the Nobel Prize for their discovery of the expansion of
the Universe, but we now have committees that give maximum awards for the highly
speculative proposal of the acceleration of the expansion, whose reality has yet to be
confirmed. We certainly do live in very a special time for cosmology. However, as we
will see in later chapters, this brand of epistemological optimism has declined with
time, and the expression ‘crisis in cosmology’ is stubbornly reverberating in the
media. The initial expectation of removing the pending minor problems arising from
increased accuracy of measurements has backfired: the higher the precision with
which the standard cosmological model tries to fit the data, the greater the number
of tensions that arise, the problems proliferating rather than diminishing. There will
be much discussion of these tensions throughout chapters 3–7.

1.4 Pillars of the standard model
1.4.1 General relativity and basic equations of the standard cosmological model

Students and professional researchers in theoretical cosmology are used to thinking
that they have understood everything about the topic after having learned mathe-
matically to formalise a set of simplistic ideas, but merely knowing how to solve
some equations does not mean that we can lay any claim to understanding the
Universe8 and, even if we have understood all of the physical or metaphysical
backgrounds of a cosmological model, who says that this is the true representation
of the Cosmos? Understanding the Universe is too ambitious an enterprise, and I
would be satisfied if I could understand the humans that produced ideas about the
Universe. It is the precise purpose of the present book to try to understand where
these ideas stem from, and the astronomical observations and social influences that
have motivated them, by reviewing hundreds of references related to the subject. The
reader may find the technical details in the bibliography, of which I present a
summary description in the coming chapters. I also encourage the lay reader of these
pages to undertake the reading of other technical books on cosmology, among the
vast number of texts available in technical libraries. I will not recommend any text in
particular, because it is difficult to choose among the excellent books and review
papers that have been written.

Presenting the mathematical developments or technicalities of observational
techniques as a subject for undergraduate or postgraduate students is not the aim
of the present pages, whose purpose is rather to offer a critical discussion oriented
towards professionals who have already learnt or have been working on cosmo-
logical research. Also, specialists in the history, philosophy and sociology of science
will find in these pages the fundamental ideas of cosmology and the debates

8As expressed by the philosopher Friedrich Nietzsche (1844–1900): ‘The calculation of the world, the
possibility of expressing with formulae all the things that are happening, is it understanding? What would
we understand about a musical composition if we calculated all of the things in it that are calculable and
reducible to formulae’ (The Will to Power).
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concerning it without having to lose themselves in a skein of equations whose
disentangling consumes most of the efforts of the reader. Nonetheless, even though
mathematical developments are not an essential part of this work, I would like to
show in this section some basic equations for the benefit of those readers with
knowledge of physics but without a previous knowledge of cosmology (the rest of
this section may be skipped by the reader with insufficient knowledge of physics).

In the usual metric notation in gravitation, ds denotes a certain infinitesimal
interval within a particular mathematical space with N dimensions and is related to
the interval in each dimension xμ (μ = … N1, , ) by

∑ ∑=
μ ν μν μ ν= =

ds g dx dx . (1.1)
N N

2
1 1

In tensor notation, the right-hand side of this equation is usually written as

μν
μ νg dx dx , where the multiplication of variables with subindex and superindex

denotes a sum over the index; μνg are the components of the metric tensor. In the
application to our 4-dimensional spacetime (three dimensions for space and one for
time), the simplest example in a Euclidean static space (Lorentzian–Minkowski
manifold) is, in Cartesian coordinates:

= − + +ds dt
c

dx dy dz
1
( ), (1.2)2 2

2
2 2 2

or, equivalently, expressed in spherical coordinates (r, θ and ϕ are the three variables
that define a position of a point in the space)

θ θ ϕ= − + +ds dt
c

dr r d r d
1
( sin ). (1.3)2 2

2
2 2 2 2 2 2

One of the core ideas of general relativity is that the metric of spacetime is
determined by the matter and energy content, and that the dynamics of particles is
determined by the geodesic in the geometry that minimises ds between two points in
that spacetime. The coefficients μνg of the metric follow

π− + Λ =μν μν μν μνR Rg g
G
c

T
1
2

8
, (1.4)

4

where μνR are the components of the Ricci curvature tensor, which is a function of

μνg and its first and second derivatives with respect to the variables μνx , and reflects
the degree to which the geometry of a given metric tensor differs from that of
Euclidean space; ≡ ∑ ∑μ ν μν μν= =R g RN N

1 1 is the scalar curvature; Λ is the cosmological
constant (or quintessence if we allowed it to vary with time instead of being a
constant); and μνT is the stress–energy tensor. In a perfect fluid, i.e. one with an
isotropic pressure p and a unique density ρ and no viscosity, it follows that

ρ= + −μν μ ν μνT p u u pg( ) , (1.5)

where ≡μ
μu

dx

ds
.
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The starting point of the standard cosmological model is the cosmological
principle, which decrees that the Universe on a large scale is homogeneous and
isotropic, and is expanding. The standard model assumes a Friedmann–Lemaître-
Robertson–Walker (FLRW) spacetime, which gives a metric

θ θ ϕ= −
−

+ +ds dt
a t
c

dr
kr

r d r d
( )

1
sin , (1.6)2 2

2

2

2

2
2 2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

where k stands for the curvature and is constant with time, being equal to zero for a
flat metric, positive for a closed Universe and negative for an open Universe; a t( ) is
an adimensional scale factor that changes with time t due to the expansion, with

=a t( ) 10 and t0 representing our present epoch. Again, r, θ, and ϕ are the three
variables in spherical coordinates that define the position of a point in space, but
here they stand for comoving coordinates; that is, they do not take into account the
expansion. The physical coordinates are derived when we multiply the common
scale factor a t( ) by the comoving coordinates. In order to know a t( ), one needs to
know the field equations obtained through the use of general relativity, and the
equation of state of the different components.

When the FLRW metric is used in conjunction with the Einstein field equations
(1.4), we obtain the two equations that were studied by Friedmann (Wesson 2014).
The assumption that the density ρ and pressure p of the cosmological fluid are
isotropic and homogeneous renders the partial differential equations (1.4) as
ordinary differential equations in the scale factor a t( ):

π ρ = ̇ + − ΛG
a
a

kc
a

c8 3 , (1.7)
2

2

2

2
2

⎛
⎝⎜

⎞
⎠⎟

π = − ̈ − ̇ − + ΛGp
c

a
a

a
a

kc
a

c
8

2 . (1.8)
2

2

2

2

2
2

Joining these two equations, we get

π ρ̈ = − + + Λ
a

G p
c

a
c
a

4
3

3
3

, (1.9)
2

2⎛
⎝⎜

⎞
⎠⎟

ρ ρ̇ = − + ̇p
c

a
a
3

. (1.10)
2

⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟

A positive cosmological constant Λ experiences repulsion, producing an accel-
eration of the expansion. If Λ = 0 we have the Friedmann models, which were the
favoured ones before the reintroduction of the cosmological constant (dark energy)
in the 1990s. Equation (1.10) indicates a stability relation for the Universe, in the
sense that the density adjusts in proportion to the expansion rate and the
combination density and pressure.

Thecosmological redshiftz (different fromaDoppler effect) is abetterparameter touse
as a cosmologicalmeasure than either the distance or the time. For an object in which the
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spectral lines emitted at wavelength λemitted are observed at a wavelength λobserved, the
definition of redshift is ≡ λ λ

λ
−z observed emitted

emitted
In terms of the scale factor of the FLRW

metric at present (t0) and at the emission epoch (te), it is given by + =z(1 ) a t
a t
( )
( )e
0 . The

Hubble–Lemaître constantH0 relates to the previous equations as ≡ ̇H a t
a t
( )
( )0
0

0
.

In equations (1.7), (1.8), we observe that the Λ term behaves mathematically as an
extra substance, known as dark energy, in vacuum space with density ρΛ and
pressure pΛ such that

ρ
π

=
−

= Λ
Λ

Λp

c
c
G8
. (1.11)

2

2

Note that a positive Λ produces a positive vacuum density with negative pressure.
We can define a total density ρ ρ ρ≡ + Λt and total pressure ≡ + Λp p pt . The term
included with density ρ and pressure p can also be decomposed in two terms that
carry some energy: matter (m) and radiation (r), so ρ ρ ρ= +m r, = +p p pm r. The
Friedmann equations can be solved when we have the equation of state that governs
the different components of the density, assumed to be perfect fluids ω ρ=p ci i i

2,
where the index i denotes the components Λ, m, or r. Hence, we can rearrange
equations (1.7), (1.9) into

π ρ = ̇ +G
a
a

kc
a

8 3 , (1.12)t

2

2

2

2

⎛
⎝⎜

⎞
⎠⎟

∑π ρ ω̈ = − +a
G4

3
(1 3 ) . (1.13)

i i i
⎡⎣ ⎤⎦

The equation of state of matter is ω = 0m while for radiation ω = 1/3r , and for the
Λ term is usually taken as ω = −Λ 1 although it can be left as a free parameter too

(Cappi 2001). Defining the ratios Ω ≡ ρ
ρi
i

c
, where ρ ≡ =

π
H
G

3
8c

2
, = ̇H t( ) ;a t

a t
( )
( )

and

Ω ≡ − k c
H ak

2
, we can rewrite equation (1.12) as:

Ω = Ω + Ω + Ω = − ΩΛ 1 . (1.14)t m r k

The comoving distance from us to a source with redshift z can be written as:

∫=r z
c
H

dx
E x

( )
( )

, (1.15)
z

0 0

where

= Ω + + Ω + + Ω + + Ω + ω
Λ

+ ΛE z z z z z( ) (1 ) (1 ) (1 ) (1 ) . (1.16)k m r
2 3 4 3(1 )

The look back time of a source redshift z is

∫=
+

t z
H

dx
x E x

( )
1

(1 ) ( )
. (1.17)

z

0 0
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There are two other commonly used definitions of distance from us to a source of
redshift z: the luminosity distance and the angular distance. The luminosity distance,
dL, follows the relationship in an equivalent Euclidean Universe of total flux F
related to the total luminosity of an object by =

π
F L

d4 L
2 . It is obtained from the

comoving distance r z( ) as

=

+
−Ω

−Ω
Ω <

+ Ω =

+
Ω

Ω
Ω >

d z

c z

H

H r z

c

z r z

c z

H

H r z

c

( )

(1 )
sin

( )
, 0

(1 ) ( ), 0

(1 )
sinh

( )
, 0

. (1.18)L
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The angular distance dA is defined such that it behaves as in an Euclidean space,
making the linear size D of an object proportional to its angular size α and inversely
proportional to that distance; i.e. α = D

dA
. The way to calculate it within the standard

cosmology is:

=
+

d z
d z

z
( )

( )
(1 )

. (1.19)A
L

2

The set of equations of this subsection define the geometry of the Universe and
are used for all kinds of tests relating different quantities: the angular size test, the
Hubble–Lemaître diagram relating fluxes with redshifts, etc. We shall see many
examples in chapter 4. Nevertheless, the physics of cosmology does not end with
these equations. There is much more, related to all the different phenomena that can
be modelled within the standard scenario. First, we have not included in these
equations inflation (see section 3.2), which modifies a t( ) for the early times of the
Universe. Predictions of the abundances of the light elements, to be compared with
the observed abundances (see chapter 6), comes from the specific nuclear physics
developed to tackle that question. Also, the cosmic microwave background
radiation (see chapter 5) can be explained independent of the relativistic geometrical
description. Of course, the Friedmann cosmological equations are necessary to
derive the conditions of density and pressure that give way to other events, but this
physics is not implicit in general relativity alone. The large-scale structure and
evolution of galaxies (see chapter 7) is pure gravitational in nature in the standard
model, but it requires further mathematics, usually with the help of computer
simulations, since the above expression accounts only for the average properties of
the distribution of matter on very large scales, but not the fluctuations with respect
to the average that form clusters of galaxies, filaments, and voids. In any case, the
basic paradigm, the framework that supports the mathematical construction of the
cosmological edifice is contained in the above equations.

This cosmology is built on the simplistic idea that the whole Universe is an
expanding, homogeneous (on a large scale), and isotropic distribution of matter,
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radiation, and dark energy whose dynamics is governed by gravity and only by
gravity, the same general relativity laws being assumed to hold everywhere and
throughout time. These are assumptions that cannot be considered as irrefutably
solid pillars. There are indeed alternative models based on different assumptions,
some of which will be reviewed in chapter 2. In any case, even if we assume that the
standard model has been built on the correct foundations, is it, perhaps, not a little
pretentious that we give these equations the name of cosmology, which embodies
knowledge about the entire existing physical world?

1.4.2 Observational pillars

It was already mentioned in the brief historical overview the observations that led
cosmologists to believe they have a model that truly represents the Universe. I
summarise them:

• The redshifts of all galaxies follow the Hubble–Lemaître law, by which they
are related to the distance of the galaxy, plus the Doppler effect due to their
peculiar motions. This was interpreted as a proof of the expansion of the
Universe. In chapter 4, this fundamental pillar will be discussed.

• The cosmic microwave background radiation of 2.725 K coming from all
directionswithvery small anisotropies is compatiblewithahighenergyprimordial
Universe. In the standard model, fluctuations in the hot matter–radiation fluid at

≈z 1100rec oscillate like sound waves. The peaks (Sakharov oscillations) in the
power spectrumareaconsequenceof these soundwaves,whichweseeat the epoch
of recombination zrec. This pillar will be discussed in chapter 5.

• The abundance pattern of the light elements is to be explained in terms of
primordial nucleosynthesis. This will be discussed in chapter 6.

• The defenders of the standard model think that the formation and evolution
of galaxies can only be explained in terms of gravitation in the cold (or warm)
dark matter theory of an expanding Universe. The present-day scenario is one
of hierarchical formation, in which the galaxies are formed in continuous
episodes of accretion and merging during their evolution. This will be
examined in chapter 7.

• Olbers’ paradox, the fact that the night is dark, is solved with a finiteUniverse,
and general relativity provides the scenario for a finite although unlimited and
borderless Universe. Even an infinite Universe is possible within the general
relativistic context, but the limited speed of light limits the horizon within which
galaxies are visible, thus solving Olbers’ paradox. Indeed, the key question is the
limited age of theUniverse rather than its limited size, and that theUniverse is not
eternalbuthadabeginning13.8Gyragoformspartof thebasicassumptionsof the
standard models. The question of whether there are objects in the Universe older
than this proposed age will be discussed in chapter 7.

Some observations will be discussed or rediscussed in order to show that these
supposedly established facts have not been strictly proven in some cases, but also, in
other cases to show the solidity of the standard theory against certain tests.
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1.5 Towards a sceptical position on cosmology
Scepticism has played an important role in the history of ideas. Reasonable doubts
have led the human intellect towards new horizons, it has enabled humanity to avoid
dogmas and be open-minded. In philosophy, there is a great tradition of epistemo-
logical scepticism, even to the extreme of denying the possibility of knowledge. One
of the most remarkable thinkers with this view was the pre-Socratic philosopher
Gorgias (c. 483 BC–375 BC), who argued that nothing exists, that even if there were
something we could not know it, and that even if we could know it we could not
communicate it to others (Jones 1952 [p 60]); the school of Academic Scepticism
during 3rd and 2nd century BC also denied that knowledge is possible, although
they held that some beliefs are more reasonable or probable than others (Popkin
1967). There is indeed some degree of scepticism in most philosophers, although
some of them, such as the modern philosophers René Descartes (1596–1650) and
David Hume (1711–1776), regard doubt as the most important element of their
philosophies.

Science cannot adopt such an extreme scepticism as that of Gorgias, otherwise
there would not be science since there would be no motivation to obtain or
communicate knowledge on the grounds that nature would be deemed not to exist.
Science is based on the assumption that nature certainly does exist, and that we can
obtain knowledge about it. But scientific method is cautious and does not accept as
truth the first idea that enters the researcher’s head. ‘Therefore, the most rational
stance as a scientist is to doubt all or almost all explanations, interpretations, and
evidence in science, as they are all tentative’ (Brewer 2020 [chapter 61]). There is a
tradition among good scientists to cast doubt upon many important discoveries, and
this has been good for science, because it obliged it to consolidate and corroborate
theories until they could no longer be reasonably doubted. For instance, in the
development of modern atomic theory since John Dalton (1766–1844), much doubt
was cast on the real existence of atoms, even as late as the beginning of the 20th
century. Scientists today no longer doubt the existence of atoms; if any did, they
would lose all credibility among their peers. This solidity of science has proved
beneficial and has been gained through the painstaking construction of hypotheses,
thanks to the prudent attitude of many scientists who thought like natural
philosophers rather than theologians. Hence, waiting a few generations before
treating the existence of dark matter and dark energy as an incontrovertible truth
would be a wise move.

Cosmological hypotheses in particular should be very cautiously proposed and
even more cautiously received. Whether modern physical cosmology is a science at
all is topic to be discussed elsewhere (see chapter 10). In any case, even if accepted as
scientific enterprise, cosmology would not be a science like others since it contains
more speculative elements than is usual in other branches of physics, except,
perhaps, particle physics. The goal of cosmology is also more ambitious than the
usual theories in physics. For example, astrophysics contains certain branches, such
as stellar physics, galactic structure, etc, that have a limited number of topics to
understand, but cosmology aims to understand everything without limit. Given that
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it is a mere one century of existence as a science, in only one century since the
beginning of its construction, its claims must be taken with a grain of salt.

To put it bluntly, if we compare figures 1.1 and 1.2, can we not see that we are
playing the same game now as many centuries ago? If we forget about the scientific
explanations, I see in both figures a similar state of mind that tries to represent the
cosmos in several layers with the elements that we have developed in our fantasies.
The astronomer Bruno Binggeli (1953–) indeed thinks that this similarity is not a
coincidence and compares modern cosmology to a symbolic expression of the states
of our mind (Binggeli 2006) (see section 9.3). Examining the history of cosmological
ideas, as we have done in this chapter, we can see humanity stumbling over the same
stone again and again. Like a matryoshka doll with infinite layers although open
from the inside out, our western culture since ancient Greece has been opening the
different layers of our Universe hoping to find the last one, and every time it finds a
new element (galaxies, dark matter, dark energy, …), naively thinking that the last
piece that completes the understanding of the vast Universe has finally been found.
Other astrophysicists have also noted this historical similarity: Jayant V Narlikar
(1938–) says, ‘There is one trait which the cosmologists of old seem to share with
their modern counterparts, viz. their fond wish that the mystery of the nature of the
Universe would be solved in their lifetime’ (Narlikar 2001). The astrophysicist
Michael J (‘Mike’) Disney (1937–) calls it the ‘fortunate epoch’ assumption, the idea
that we live in the first human epoch that possesses the technical means to tease out
the crucial observations (Disney 2000).

Mike Disney is indeed a remarkable example of the modern sceptical astrophys-
icist, with a long career of contributing significant advances to extragalactic
astrophysics. In his bold paper ‘The case against cosmology’ (Disney 2000), he
identifies present-day cosmology as a dogma with a series of gratuitous or quasi-
gratuitous assumptions: apart from the above-mentioned ‘fortunate epoch’, there is:
the ‘non-theological’ assumption, according to which speculations are not made
which cannot, at least in principle, be tested against observational or experimental
data; the ‘good-luck’ assumption, under which the portion of the Universe susceptible
to observation is supposed to be representative of the cosmos as a whole; the
‘simplicity’ assumption that the Universe was constructed using a significantly lower
number of free parameters than the number of clean and independent observations we
can make; and the ‘non-circularity’ assumption that the laws of physics that have
significantly controlled the Universe since its beginning are, or can be, known to us
from considerations outside cosmology itself. He concludes:

We believe the most charitable thing that can be said of such statements is that
they are naive in the extreme and betray a complete lack of understanding of
history, of the huge difference between an observational and an experimental
science, and of the peculiar limitations of cosmology as a scientific discipline
(Disney 2000).

Only beasts could remain indifferent to questions about the origin, structure
and fate of the cosmos in which they live. Only saints could resign themselves
to never knowing the answers. The upshot has been that every civilization

Fundamental Ideas in Cosmology

1-25



known to anthropology has put together such meagre observations as it
possesses, has interpreted them in the light of currently fashionable ideas, and
then manufactured as plausible a cosmological story as it can to tell its
students and its children. The trouble is that none of those cosmologies have
stood the test of time. Have we any reason to be more confident in the Big
Bang Cosmology (BBC) which is fashionable today? (Disney 2011)

We may interpret this as too daring, too exaggerated a parody that is out of place
in the present cosmological scene. Ćirković (2002) criticises Disney (2000), saying
that his claims are rhetorical with no new ideas about the sociology and philosophy
of science, and that his critique is unfair, biased, and constrained within an extreme
inductivism. Other disciplines operate in a similar way to cosmology and they are
sciences, says Ćirković. But we could also pay attention to some of Disney’s
sentences and see that there is some background of truth in what he claims, in spite
of the exaggeration.

In any case, Disney’s position is an exception within the exception of anti-Big
Bang cosmologists. Most (professional or amateur) researchers who are critical with
the standard model still live in the delusion of grandeur that accompanied the
creators of the Big Bang theory by believing that this theory can be substituted by
another, an alternative model (see chapter 2 for many examples), in most cases
created by themselves. A sceptical attitude is common among philosophers of
science and academics with a humanistic education, an attitude that is usually
accompanied by an anti-scientific stance and a vision that ‘man is the measure of all
things’ (Protagoras, c. 485 BC–c. 411 BC), putting everything in the same sack, and
reducing any natural truth to a cultural relativistic standpoint so they do not
distinguish between the truths of cosmology and the truths of other particular
sciences. This is no better than the misguided attitude of those tavern philosophers
who, with no training in either philosophy or science, declare their disbelief in the
Big Bang while presenting no justification for their claim.

Not all attitudes and ideas have the same value, regardless of their number of
followers. As a matter of fact, if we remove from cosmology those opinions of
dogmatic individuals, both orthodox and heterodox, those with no idea of modern
cosmology, and those who adopt clearly anti-scientific positions, the number of
individuals is very small. Pulchrum est paucorum hominum9. Here, ‘beauty’ takes the
form of the brilliance of intellect, which observes with rigour and reason transcends
mere delusion. But, of course, being part of a very small group—that group often
consisting of just one person—with some ideas in common does not necessarily give
us a clearer perspective. A belief that one is an unacknowledged genius or that one’s
views happen to coincide with the majority are insufficient qualification in the quest
for knowledge. Chapter 8 will be dedicated to the sociological aspects of cosmology
and to an analysis of why individuals orientate their research towards either
orthodox or heterodox positions.

9 ‘Beauty is for the few’, an expression from the original German edition of Nietzsche’s Twilight of the Gods.
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The view that will be developed in this book is certainly sceptical vis-à-vis the
standard cosmological model, but this scepticism is not mere pose. It must be argued
with the same kinds of scientific arguments that are used to defend the standard
model, with due reference to the observational pillars that support the fundamental
ideas of modern cosmology. This may leave us open to an accusation of adopting an
instrumentalist stance10 with regard to cosmology (Soler Gil 2012), on the grounds
that we say it works insofar as it explains the observations because many elements
were introduced ad hoc to make it work. However, I am not saying that no model
contains any truth or reality, since such an attitude would reduce scepticism in
cosmology to another dogma in itself. As a matter of fact, I will show in chapters 3–7
that there are some partial realities in the standard model that look quite robust. The
overall picture of a Universe completely understood by the theory is somewhat hazy,
but at least some partial truths can be observed in quite a clear-cut way.
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